Respuesta :

Answer:

2

Step-by-step explanation:

So I'm going to use vieta's formula.

Let u and v the zeros of the given quadratic in ax^2+bx+c form.

By vieta's formula:

1) u+v=-b/a

2) uv=c/a

We are also given not by the formula but by this problem:

3) u+v=uv

If we plug 1) and 2) into 3) we get:

-b/a=c/a

Multiply both sides by a:

-b=c

Here we have:

a=3

b=-(3k-2)

c=-(k-6)

So we are solving

-b=c for k:

3k-2=-(k-6)

Distribute:

3k-2=-k+6

Add k on both sides:

4k-2=6

Add 2 on both side:

4k=8

Divide both sides by 4:

k=2

Let's check:

[tex]3x^2-(3k-2)x-(k-6) \text{ with }k=2[/tex]:

[tex]3x^2-(3\cdot 2-2)x-(2-6)[/tex]

[tex]3x^2-4x+4[/tex]

I'm going to solve [tex]3x^2-4x+4=0[/tex] for x using the quadratic formula:

[tex]\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\frac{4\pm \sqrt{(-4)^2-4(3)(4)}}{2(3)}[/tex]

[tex]\frac{4\pm \sqrt{16-16(3)}}{6}[/tex]

[tex]\frac{4\pm \sqrt{16}\sqrt{1-(3)}}{6}[/tex]

[tex]\frac{4\pm 4\sqrt{-2}}{6}[/tex]

[tex]\frac{2\pm 2\sqrt{-2}}{3}[/tex]

[tex]\frac{2\pm 2i\sqrt{2}}{3}[/tex]

Let's see if uv=u+v holds.

[tex]uv=\frac{2+2i\sqrt{2}}{3} \cdot \frac{2-2i\sqrt{2}}{3}[/tex]

Keep in mind you are multiplying conjugates:

[tex]uv=\frac{1}{9}(4-4i^2(2))[/tex]

[tex]uv=\frac{1}{9}(4+4(2))[/tex]

[tex]uv=\frac{12}{9}=\frac{4}{3}[/tex]

Let's see what u+v is now:

[tex]u+v=\frac{2+2i\sqrt{2}}{3}+\frac{2-2i\sqrt{2}}{3}[/tex]

[tex]u+v=\frac{2}{3}+\frac{2}{3}=\frac{4}{3}[/tex]

We have confirmed uv=u+v for k=2.