Answer: 0.8664
Step-by-step explanation:
Given : Mean : [tex]\mu = 60,000\text{ miles}[/tex]
Standard deviation : [tex]\sigma = 4,000\text{ miles}[/tex]
Sample size : [tex]n=40[/tex]
The formula to calculate the z-score :-
[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
For x= 59,050
[tex]z=\dfrac{59050-60000}{\dfrac{4000}{\sqrt{40}}}\approx-1.50[/tex]
For x= 60,950
[tex]z=\dfrac{60950-60000}{\dfrac{4000}{\sqrt{40}}}\approx1.50[/tex]
The P-value : [tex]P(-1.5<z<1.5)=P(z<1.5)-P(z<-1.5)[/tex]
[tex]=0.9331927-0.0668072=0.8663855\approx0.8664[/tex]
Hence, the likelihood of finding that the sample mean is between 59,050 and 60,950=0.8664