Respuesta :

gmany

Answer:

[tex]\large\boxed{\sqrt{80}=4\sqrt5}[/tex]

Step-by-step explanation:

Method 1:

The formula of a distance between two points:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We have the points (-4, 1) and (4, 5). Substitute:

[tex]d=\sqrt{(4-(-4))^2+(5-1)^2}=\sqrt{8^2+4^2}=\sqrt{64+16}=\sqrt{80}[/tex]

[tex]\sqrt{80}=\sqrt{16\cdot5}=\sqrt{16}\cdot\sqrt5=4\sqrt5[/tex]

Method 2:

Look at the picture.

Use the Pythagorean theorem:

[tex]leg^2+leg^2=hypotenuse^2[/tex]

We have

[tex]leg=8,\ leg=4,\ hypotenuse=x[/tex]

Substitute:

[tex]x^2=8^2+4^2\\\\x^2=64+16\\\\x^2=80\to x=\sqrt{80}\\\\x=4\sqrt5[/tex]

Ver imagen gmany