Solve for the variable in the equations below. Round your answers to the nearest hundredth. Do not round any intermediate computations.

Answer:
Part 1) [tex]x=-0.07[/tex]
Part 2) [tex]y=2.48[/tex]
Step-by-step explanation:
Part 1) we have
[tex]15^{-9x} =6[/tex]
Solve for x
Apply log both sides
[tex]log(15^{-9x})=log(6)[/tex]
[tex]-x*(9log(15))=log(6)[/tex]
[tex]x=-log(6)/(9log(15))[/tex]
[tex]x=-0.07[/tex]
Part 2) we have
[tex]e^{y}=12[/tex]
Apply ln both sides
[tex]ln(e^{y})=ln(12)[/tex]
[tex]y*ln(e)=ln(12)[/tex]
Remember that
[tex]ln(e)=1[/tex]
[tex]y=ln(12)[/tex]
[tex]y=2.48[/tex]
Answer with explanation:
The two equations which we have to solve for x and y and the way of finding it's solution is
[tex]1.\rightarrow 15^{-9x}=6\\\\\text{Taking log on both sides}\\\\\rightarrow -9x \log 15=\log 6\\\\\rightarrow x \log 15^{-9}=\log 6\\\\\rightarrow x=\frac{\log 6}{\log 15^{-9}}}\\\\\rightarrow x=\log_{15^{-9}} 6\\\\2.\rightarrow e^y=12\\\\\text{Taking log on both sides}\\\\\rightarrow y \log e=\log 12\\\\\rightarrow y= \log 12[/tex]