Respuesta :
[tex]g(r,\theta)=(r\cos\theta,r\sin\theta,\theta)\implies\begin{cases}g_r=(\cos\theta,\sin\theta,0)\\g_\theta=(-r\sin\theta,r\cos\theta,1)\end{cases}[/tex]
The surface element is
[tex]\mathrm dS=\|g_r\times g_\theta\|\,\mathrm dr\,\mathrm d\theta=\sqrt{1+r^2}\,\mathrm dr\,\mathrm d\theta[/tex]
and the integral is
[tex]\displaystyle\iint_Sx^2+y^2\,\mathrm dS=\int_0^{2\pi}\int_0^4((r\cos\theta)^2+(r\sin\theta)^2)\sqrt{1+r^2}\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle2\pi\int_0^4r^2\sqrt{1+r^2}\,\mathrm dr=\frac\pi4(132\sqrt{17}-\sinh^{-1}4)[/tex]
###
To compute the last integral, you can integrate by parts:
[tex]u=r\implies\mathrm du=\mathrm dr[/tex]
[tex]\mathrm dv=r\sqrt{1+r^2}\,\mathrm dr\implies v=\dfrac13(1+r^2)^{3/2}[/tex]
[tex]\displaystyle\int_0^4r^2\sqrt{1+r^2}\,\mathrm dr=\frac r3(1+r^2)^{3/2}\bigg|_0^4-\frac13\int_0^4(1+r^2)^{3/2}\,\mathrm dr[/tex]
For this integral, consider a substitution of
[tex]r=\sinh s\implies\mathrm dr=\cosh s\,\mathrm ds[/tex]
[tex]\displaystyle\int_0^4(1+r^2)^{3/2}\,\mathrm dr=\int_0^{\sinh^{-1}4}(1+\sinh^2s)^{3/2}\cosh s\,\mathrm ds[/tex]
[tex]\displaystyle=\int_0^{\sinh^{-1}4}\cosh^4s\,\mathrm ds[/tex]
[tex]=\displaystyle\frac18\int_0^{\sinh^{-1}4}(3+4\cosh2s+\cosh4s)\,\mathrm ds[/tex]
and the result above follows.