Respuesta :
The probability of two independant events [tex]a[/tex] and [tex]b[/tex] can be found by multiplying the individual probabilities like so: [tex]P_{total} = P_a * P_b[/tex]
For each individual probability we can find the answer via a simplfied representation:
[tex]P_x=\frac{desired}{total}[/tex]
For the first stone (orange) we have:
[tex]P_{orange}=\frac{orange}{total}=\frac{9}{18}=\frac{1}{2}[/tex]
For the second stone (green) we have:
[tex]P_{green}=\fracgreen}{total}=\frac{5}{18}[/tex]
**(Notice that the total is still 18 since he put the first one back in the jar before drawing the second.)
So:
[tex]P_{total}=P_{orange} \times P_{green}[/tex]
[tex]P_{total}=\frac{1}{2} \times \frac{5}{18}[/tex]
[tex]P_{total}=\frac{5}{36} \approx 13.88\%[/tex]
For each individual probability we can find the answer via a simplfied representation:
[tex]P_x=\frac{desired}{total}[/tex]
For the first stone (orange) we have:
[tex]P_{orange}=\frac{orange}{total}=\frac{9}{18}=\frac{1}{2}[/tex]
For the second stone (green) we have:
[tex]P_{green}=\fracgreen}{total}=\frac{5}{18}[/tex]
**(Notice that the total is still 18 since he put the first one back in the jar before drawing the second.)
So:
[tex]P_{total}=P_{orange} \times P_{green}[/tex]
[tex]P_{total}=\frac{1}{2} \times \frac{5}{18}[/tex]
[tex]P_{total}=\frac{5}{36} \approx 13.88\%[/tex]