Respuesta :

QUESTION 1

The given logarithm is

[tex]\log_{243}(27)[/tex]

Let [tex]\log_{243}(27)=x[/tex].

We rewrite in exponential form to get;

[tex]27=243^x[/tex]

We rewrite both sides of the equation as an index number to base 3.

[tex]3^3=3^{5x}[/tex]

Since the bases are the same, we equate the exponents.

[tex]3=5x[/tex]

Divide both sides by 5.

[tex]x=\frac{3}{5}[/tex]

[tex]\therefore \log_{243}(27)=\frac{3}{5}[/tex]

QUESTION 2

The given logarithm is

[tex]\log_{25}(\frac{1}{5} )[/tex]

We rewrite both the base and the number as power to base 5.

[tex]\log_{5^2}(5^{-1})[/tex]

Recall that: [tex]\log_{a^q}(a^p)=\frac{p}{q} \log_a(a)=\frac{p}{q}[/tex]

We apply this property to obtain;

[tex]\log_{5^2}(5^{-1})=\frac{-1}{2}\log_5(5)=-\frac{1}{2}[/tex]