Respuesta :

Answer: [tex]x=\frac{37}{9}[/tex]

Step-by-step explanation:

By the negative exponent rule, you have that:

[tex](\frac{1}{a})^n=a^{-n}[/tex]

By the exponents properties, you know that:

[tex](m^n)^l=m^{(nl)}[/tex]

[tex](m^n)(m^l)=m^{(n+l)}[/tex]

Rewrite 4, 8 and 32 as following:

4=2²

8=2³

32=2⁵

Rewrite the expression:

[tex](2^2)^{(x-7)}*(2^3)^{(2x-3)}=\frac{32}{2^{(x-9)}}[/tex]

Keeping on mind the exponents properties, you have:

[tex](2)^{2(x-7)}*(2)^{3(2x-3)}=32(2^{-(x-9)}[/tex]

[tex](2)^{2(x-7)}*(2)^{3(2x-3)}=(2^5)(2^{-(x-9)})\\\\(2)^{(2x-14)}*(2)^{(6x-9)}=(2^5)(2^{(-x+9)})\\\\2^{((2x-14)+(6x-9))}=2^{(5+(-x+9))}[/tex]

As the bases are equal, then:

[tex](2x-14)+(6x-9)=5+(-x+9)\\\\2x-14+6x-9=5-x+9\\\\8x-23=14-x\\9x=37[/tex]

[tex]x=\frac{37}{9}[/tex]

Answer:

[tex]x=4\frac{1}{9}[/tex]

Step-by-step explanation:

We are given the following linear equation and we are to solve it:

[tex] 4 ^ { x - 7 } \times 8 ^ { 2x - 3 } = \frac { 32 } { x ^ { x - 8 } } [/tex]

Changing the constants to the same base to make it easier to solve:

[tex] 2 ^ { 2 ( x - 7 ) } \times 2^ { 3 ( 2x - 3 ) } = \frac { 2 ^ 5 } { 2 ^ { x - 9 } } [/tex]

[tex]2^{2x-14} \times 2^{6x-9} = 2^{5}(2^{-x+9})[/tex]

[tex] 2 ^ { 2x - 14 + 6x - 9 } = 2 ^ { 5 - x + 9 } [/tex]

[tex] 2 x + 6x - 14 - 9 = 5 - x + 9 [/tex]

[tex]8x+x=14+9+5+9[/tex]

[tex]9x=37[/tex]

[tex]x=4\frac{1}{9}[/tex]