Find the area of the trapezoid. leave your answer in simplest radical form.

Answer:
= 32√3 ft²
Step-by-step explanation:
Area of the trapezoid will be equal to the area of the square and that of the triangle.
Considering the triangle part;
Cos 60 = x/8
x = 8 × sin 60
= 4
Base of the triangle part = 4 ft
Therefore, top of the trapezoid = 6 ft
Height = 8 × sin 60
= 8 × √3/2
= 4 √3
Area of the trapezoid
Area = ((a+b)/2) × h
= ((6 + 10 )/2 )× 4√3
= 16/2 × 4√3
= 32√3 ft²
Answer:
4th option is correct
Step-by-step explanation:
Here in the triangle we have angle = 60
hypotenuse= 8
opposite and adjacent can be solved using trigonometric ratios
cos 60 = [tex]\frac{adjacent}{hupotenuse} \\\frac{adjacent}{8} \\\frac{1}{2}=\frac{adjacent}{8}[/tex]
which gives adjacent = 4 on solving
likewise using sine we can find opposite side to the angle which is height of
trapezium.
sin60[tex]\frac{opposite}{hypotenuse}=\frac{x}{8} \\\frac{\sqrt{3} }{2}=\frac{x}{8}\\x=4\sqrt{3}[/tex]
therefore height =[tex]4\sqrt{3}[/tex] and adjacent = 4 ft
therefore opposite sides of Trapezium are 10 ft and 6 ft
Formula for area of Trapezium =[tex]\frac{1}{2}[/tex](sum of parallel sides)x height
= [tex]\frac{1}{2}[/tex](10+6)x [tex]4\sqrt{3}[/tex]
on solving it ,we get [tex]32\sqrt{3}[/tex]