Respuesta :

gmany

Answer:

[tex]\boxed{\dfrac{f(a+h)-f(a)}{h}=-3a^2-3ah-h^2}[/tex]

Step-by-step explanation:

[tex]f(x)=-x^3+2\\\\\dfrac{f(a+h)-f(a)}{h}\\\\f(a+h)\to\text{substitute x = a + h}\\f(a)\to\text{substitute x = a}\\\\\dfrac{f(a+h)-f(a)}{h}=\dfrac{-(a+h)^3+2-(-a^3+2)}{h}\\\\\text{use}\ (x+y)^3=x^3+3x^2y+3xy^2+y^3\\\\=\dfrac{-(a^3+3a^2h+3ah^2+h^3)+2-(-a^3)-2}{h}\\\\=\dfrac{-a^3-3a^2h-3ah^2-h^3+2+a^3-2}{h}\\\\\text{combine like terms}[/tex]

[tex]=\dfrac{(-a^3+a^3)-3a^2h-3ah^2-h^3+(2-2)}{h}\\\\=\dfrac{-3a^2h-3ah^2-h^3}{h}\\\\=\dfrac{h(-3a^2-3ah-h^2)}{h}\\\\=-3a^2-3ah-h^2[/tex]