Respuesta :

ANSWER

[tex] \boxed {b = \pm12}[/tex]

EXPLANATION


The given quadratic equation is

[tex]2 {x}^{2} + bx + 18 = 0[/tex]

By comparing to

[tex]a {x}^{2} +b x + 18 = 0[/tex]

[tex]a=2,c=18[/tex]


If this equation has a double root, then the discriminant is zero.

Thus,

[tex]{b}^{2} - 4ac = 0[/tex]


We substitute the values into the formula to obtain,


[tex] {b}^{2} - 4(2)(18) = 0[/tex]


[tex]\Rightarrow \: {b}^{2} - 144 = 0[/tex]



[tex]\Rightarrow \: {b}^{2} = 144 [/tex]



We take the square root of both sides to obtain,

[tex]b= \pm \: \sqrt{144} [/tex]


[tex]\Rightarrow \: b= \pm 12[/tex]