Sketch the plane curve represented by the given parametric equations. Then use interval notation to give the relation's domain and range. X = 2t, y = t2 + t + 3

Respuesta :

Answer:

Domain: [tex]( -\infty,\infty )[/tex] and Range: [tex][ -1,\infty )[/tex]

Step-by-step explanation:

We have the parametric equations [tex]x= 2t[/tex] and [tex]y=t^{2}+t+3[/tex].

Now, we will find the values of 'x' and 'y' for different values of 't'.

t                       :   -3       -2.5     -2     -1.5     -1     0       1      1.5      2

[tex]x= 2t[/tex]             :   -6       -5       -4       -3      -2    0      2      3        4

[tex]y=t^{2}+t+3[/tex]  :    9       6.75     5     3.75     3    3      5     6.75     9

Now, we can see that these parametric equations represents a parabola.

The general form of the parabola is [tex]y=ax^{2}+bx+c[/tex].

Now, we have the point ( x,y ) = ( 0,3 ). This gives that c = 3.

Also, we have the points ( x,y ) = ( -2,3 ) and ( 2,5 ). Substituting these in the general form gives us,

4a - 2b + 3 = 3 → 4a - 2b = 0 → b = 2a.

4a + 2b + 3 = 5 → 4a + 2b = 2 → 2a + b = 1 →  2a + 2a = 1 ( As, b = 2a ) → 4a = 1 → [tex]a=\frac{1}{4}[/tex].

So, [tex]b=\frac{1}{2}[/tex].

Therefore, the equation of the parabola obtained is [tex]y=\frac{x^{2}}{4}+\frac{x}{2}+3[/tex].

The graph of this function is given below and we can see from the graph that domain contains all real numbers and the range is [tex]y\geq -1[/tex].

Hence, in the interval form we get,

Domain is [tex]( -\infty,\infty )[/tex] and Range is [tex][ -1,\infty )[/tex]

Ver imagen wagonbelleville

Answer:

Domain:

[tex](-\infty,\infty)[/tex]

Range:

[tex][2.75,\infty)[/tex]

Step-by-step explanation:

we are given parametric equation as

[tex]x=2t[/tex]

[tex]y=t^2+t+3[/tex]

We can change into rectangular equation

we can eliminate t from first equation and plug into second equation

[tex]x=2t[/tex]

[tex]t=\frac{x}{2}[/tex]

now, we can plug that into second equation

[tex]y=(\frac{x}{2})^2+\frac{x}{2}+3[/tex]

now, we can draw graph

Domain:

we know that

domain is all possible values of x for which any function is defined

we can see that our equation is parabolic

and it is defined for all values of x

so, domain will be

[tex](-\infty,\infty)[/tex]

Range:

we know that

range is all possible values of y

we can see that

smallest y-value is 2.75

so, range will be

[tex][2.75,\infty)[/tex]


Ver imagen rejkjavik