Respuesta :
Answer: p = $100, R = $25,000
Step-by-step explanation:
The maximum is the y-value of the Vertex.
Step 1: Use the Axis-Of-Symmetry (AOS) formula to find x: [tex]x=\dfrac{-b}{2a}[/tex]
R(p) = -2.5p² + 500p
a=-2.5 b=500
[tex]p=\dfrac{-(500)}{2(-2.5)}[/tex]
[tex]=\dfrac{-500}{-5}[/tex]
[tex]=100[/tex]
Step 2: Find the maximum by plugging the p-value (above) into the given equation.
R(100) = -2.5(100)² + 500(100)
= -25,000 + 50,000
= 25,000
It's a quadratic function
[tex]f(x)=ax^2+bx+c[/tex]
If a < 0, then the function has a maximum value in vertex.
The vertex (h, k), where:
[tex]h=\dfrac{-b}{2a},\ k=f(h)=\dfrac{-(b^2-4ac)}{4a}[/tex]
We have:
[tex]R(p)=-2.5p^2+500p\\\\a=-2.5<0,\ b=500,\ c=0[/tex]
Substitute:
[tex]h=\dfrac{-500}{2(-2.5)}=\dfrac{-500}{-5}=100\\\\k=R(100)=-2.5(100)^2+500(100)\\\\k=-2.5(10,000)+50,000\\\\k=-25,000+50,000\\\\k=25,000[/tex]