A particle is moving along the x-axis so that its position at t ≥ 0 is given by s(t)=(t)ln(5t). Find the acceleration of the particle when the velocity is first zero
5e
5e^2
e
None of these

Respuesta :

Answer:

[tex]a(\frac{1}{5e})=5e[/tex]

Step-by-step explanation:

we are given equation for position function as

[tex]s(t)=tln(5t)[/tex]

Since, we have to find acceleration

For finding acceleration , we will find second derivative

[tex]s'(t)=\frac{d}{dt}\left(t\ln \left(5t\right)\right)[/tex]

[tex]=\frac{d}{dt}\left(t\right)\ln \left(5t\right)+\frac{d}{dt}\left(\ln \left(5t\right)\right)t[/tex]

[tex]=1\cdot \ln \left(5t\right)+\frac{1}{t}t[/tex]

[tex]s'(t)=\ln \left(5t\right)+1[/tex]

now, we can find derivative again

[tex]s''(t)=\frac{d}{dt}\left(\ln \left(5t\right)+1\right)[/tex]

[tex]=\frac{d}{dt}\left(\ln \left(5t\right)\right)+\frac{d}{dt}\left(1\right)[/tex]

[tex]=\frac{1}{t}+0[/tex]

[tex]a(t)=\frac{1}{t}[/tex]

Firstly, we will set velocity =0

and then we can solve for t

[tex]v(t)=s'(t)=\ln \left(5t\right)+1=0[/tex]

we get

[tex]t=\frac{1}{5e}[/tex]

now, we can plug that into acceleration

and we get

[tex]a(\frac{1}{5e})=\frac{1}{\frac{1}{5e}}[/tex]

[tex]a(\frac{1}{5e})=5e[/tex]