Respuesta :

Answer:

Option A is correct.

[tex]a_n =-15 (\frac{1}{5})^{n-1}[/tex]

Step-by-step explanation:

Given: [tex]a_1 = -15[/tex] ; [tex]a_n = \frac{1}{5} \cdot a_{n-1}[/tex]

for n = 2

[tex]a_2 = \frac{1}{5} \cdot a_{2-1}[/tex] = [tex]\frac{1}{5}\cdot a_1 = \frac{1}{5} \cdot (-15)[/tex]

for n =3

[tex]a_3 = \frac{1}{5} \cdot a_{3-1}[/tex] = [tex]\frac{1}{5} \cdota_2= (\frac{1}{5})^2\cdot (-15)[/tex]

Simlarly , for n =4

[tex]a_3 = \frac{1}{5} \cdot a_{4-1}[/tex] = [tex]\frac{1}{5}\cdot a_3= (\frac{1}{5})^3\cdot (-15)[/tex]

and so on...

Common ratio(r) states that for a geometric sequence or geometric series, the common ratio is the ratio of a term to the previous term.

we have;   [tex]r = \frac{a_2}{a_1} = \frac{1}{5}[/tex]

Now; by recursive formula for geometric series:

[tex]a_n = a_1 r^{n-1}[/tex]

where [tex]a_1[/tex] is the first term and r is the common ratio:

Substitute the value of [tex]a_1 = -15[/tex]  and  [tex]r = \frac{1}{5}[/tex]

we have;

[tex]a_n =-15 (\frac{1}{5})^{n-1}[/tex]

therefore, the explicit rule for the geometric sequence is; [tex]a_n =-15 (\frac{1}{5})^{n-1}[/tex]