Respuesta :

frika

Suppose that a>b>1, then

[tex]a^x>b^x[/tex] and [tex]\log_ax<\log_bx.[/tex]

Therefore, since 2<3<7, [tex]\log_2x>\log_3x>\log_7x.[/tex]

Choose an arbitrary x>1. You have that a takes the greatest values at x, c takes the smallest value at x. Thus,

a>b>c and

  • [tex]a=\log_2x;[/tex]
  • [tex]b=\log_3x;[/tex]
  • [tex]c=\log_7x.[/tex]

Answer: correct option is B.