Respuesta :

Apply the rule: [tex]n ln x = ln x^{n}[/tex]

[tex]3[2 ln(x-1) - lnx] + ln(x+1)=3[ln(x-1)^{2} - lnx ] + ln(x+1)[/tex]

Apply the rule : [tex]log a - log b = log \frac{a}{b}[/tex]

[tex]3[2 ln(x-1) - lnx] + ln(x+1)=3ln\frac{(x-1)^{2} }{x} + ln(x+1)[/tex]

Apply the rule: [tex]n ln x = ln x^{n}[/tex]

[tex]3[ln (x-1)^{2} -ln x]+ln (x+1)= ln \frac{(x-1)^{6} }{x^{3} } +log(x+1)[/tex]

Finally, apply the rule: log a + log b = log ab

[tex]3[ln(x-1)^{2} -ln x]+log(x+1)=ln\frac{(x-1)^{6}(x+1) }{x^{3} }[/tex]