Leslie is making a cardboard box that has a volume of 2x3 + 3x2 − 11x − 6 cubic feet. the base has an area of x2 + x − 6 square feet. what will the height of the box be? (hint: volume = base area · height)

Respuesta :

we know that

The volume of the box is equal to

V=area of the base*height

solve for the height

height=Volume/(area of the base)

[tex]V=2x^{3}+3x^{2}- 11x- 6\ ft^{3} \\ Area\ of\ the\ base=x^{2}+x-6\ ft^{2}[/tex]

using a graph tool-----> find the roots

see the attached figures

so

[tex]2x^{3}+3x^{2}- 11x- 6=2*(x+3)*(x+0.5)*(x-2)[/tex]

[tex]x^{2}+x-6=(x+3)*(x-2)[/tex]

substitute

height=Volume/(area of the base)

[tex]height= \frac{2*(x+3)*(x+0.5)*(x-2)}{(x+3)*(x-2)} = 2*(x+0.5)[/tex]

[tex]height=2x+1[/tex]

therefore

the answer is

[tex]height=2x+1[/tex]

Ver imagen calculista
Ver imagen calculista

Answer:

Height of the box = 2x+1

Step-by-step explanation:

Leslie is making a cardboard box that has a

volume of  cubic feet. [tex]2x^3 + 3x^2 − 11x − 6[/tex]

the base has an area of [tex]x^2 + x − 6[/tex] square feet.

Volume of a box = Base area * height of the box

we are given with volume and base area

Replace it in the formula. LEts factor the given expression

[tex]2x^3 + 3x^2 - 11x - 6 [/tex]

[tex]\left(x-2\right)\left(2x+1\right)\left(x+3\right)[/tex]

Now we factor[tex]x^2 +x -6 = (x+3))x-2)[/tex]

Volume of a box = Base area * height of the box

[tex]\left(x-2\right)\left(2x+1\right)\left(x+3\right)= (x+3)(x-2) * height[/tex]

Divide both sides by (x+3)(x-2)

Height of the box = 2x+1