Respuesta :

F(x) = x/5
F(x)= 3^SQR 2x
F(x) =x - 10
F(x) = 2x/3 - 17

These would be your answers in order :)
QUESTION 1

The given function is

[tex]f(x) = \frac{2x}{3} - 17[/tex]

To find the inverse function, we let

[tex]y = f(x)[/tex]

This implies that,

[tex]y= \frac{2x}{3} - 17[/tex]

This will give us,

[tex]y + 17= \frac{2x}{3} [/tex]

We multiply through by 3 to obtain;

[tex]3(y + 17) = 2x [/tex]

We now interchange x and y to obtain,

[tex]3x = 2y - 51[/tex]

We make y the subject to obtain,

[tex]3(x + 17) = 2y[/tex]

[tex]y = \frac{3(x + 17)}{2} [/tex]

This implies that,

[tex] {f}^{ - 1} (x) = \frac{3(x + 17)}{2} [/tex]
Therefore,

[tex]f(x) = \frac{2x}{3} - 17 \rightarrow \: {f}^{ - 1} (x) = \frac{3(x + 17)}{2} [/tex]

QUESTION 2

The given function is

[tex]f(x) = x - 10[/tex]

To find the inverse function we let
[tex]y = x - 10[/tex]

We then interchange x and y to obtain,

[tex]x = y - 10[/tex]

We solve for y to obtain,

[tex]y = x + 10[/tex]

Therefore the inverse function is

[tex] {f}^{ - 1} (x) = x + 10[/tex]

Hence,

[tex] f(x) = x - 10 \rightarrow \: {f}^{ - 1} (x) = x + 10[/tex]

QUESTION 3.

The given function is

[tex]f(x) = \sqrt[3]{2x} [/tex]

We want to find the inverse so we let

[tex]y=\sqrt[3]{2x} [/tex]

We now interchange x and y to obtain,

[tex]x=\sqrt[3]{2y} [/tex]

We now make y the subject, by first taking the cube of both sides of the equation.

[tex] {x}^{3} = 2y[/tex]

Divide through by 2 to get,

[tex] \frac{ {x}^{3} }{2} = y[/tex]

Or

[tex] y = \frac{ {x}^{3} }{2}[/tex]

This implies that,

[tex] {f}^{ - 1}(x) = \frac{ {x}^{3} }{2} [/tex]

Therefore

[tex] f(x) = \sqrt[3]{2x} \rightarrow \: {f}^{ - 1}(x) = \frac{ {x}^{3} }{2} [/tex]

QUESTION 4

The given function is

[tex]f(x) = \frac{x}{5} [/tex]

We let

[tex]y = \frac{x}{5} [/tex]

Interchange x and y to get,

[tex]x = \frac{y}{5} [/tex]

Make y the subject to get,

[tex]y = 5x[/tex]

This implies that,

[tex] {f}^{ - 1} (x)= 5x[/tex]

[tex] f(x) = \frac{x}{5} \: \rightarrow \: {f}^{ - 1} (x)= 5x[/tex]