Respuesta :

(4^14)^-2

[tex] =(4^{14})^{-2} [/tex]

Apply the formula : [tex] (x^m)^n=x^{m*n} [/tex]

We get:

[tex] =4^{14*(-2)} [/tex]

[tex] =4^{-28} [/tex]

[tex] =(2^2)^{-28} [/tex]

[tex] =(2^2)^{-28} [/tex]

Apply the formula : [tex] (x^m)^n=x^{m*n} [/tex]

We get:

[tex] =2^{2*(-28)} [/tex]

[tex] =2^{-56} [/tex]

convert negative exponent into positive

[tex] =\frac{1}{2^{56}} [/tex]

Hence final equivalent answer is [tex] \frac{1}{2^{56}} [/tex]

You can also use [tex] 2^{-56} [/tex] as exponent form if you don't want to remove negative sign from exponent.