Triangles MOP and MNQ are similar. Find x.

Aight so if you add the angel mn and no you get eight so that must mean the opposite side must also equal eight, in that case 8-4 is 4, so Qp is 4
correct me if im wrong
Answer:
The value of x is 4/3.
Step-by-step explanation:
It is given that triangles MOP and MNQ are similar.
The corresponding sides of similar triangles are proportional.
[tex]\frac{MQ}{MP}=\frac{MN}{MO}[/tex]
[tex]\frac{MQ}{MQ+QP}=\frac{MN}{MN+NO}[/tex]
It is given that MQ=4, QP=x, MN=6, NO=2. Put this value in the above equation.
[tex]\frac{4}{4+x}=\frac{6}{6+2}[/tex]
[tex]\frac{4}{4+x}=\frac{6}{8}[/tex]
[tex]4\times 8=6(4+x)[/tex]
[tex]32=24+6x[/tex]
[tex]32-24=6x[/tex]
[tex]8=6x[/tex]
Divide both sides by 6.
[tex]\frac{8}{6}=x[/tex]
[tex]\frac{4}{3}=x[/tex]
Therefore the value of x is 4/3.